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The importance of the correlation of systematic uncertainties:

* Dbetween data points within a spectrum

» Dbetween different spectra from a single analysis

» Dbetween different spectra from different analyses, different processes


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-017/

As an example let’s discuss fits to
Lepton+jets 8 TeV data from arxIV:1511.04716

https://www.hepdata.net/record/84154

The most constraining top distributions are p;', V; Yivar Mipar @Nd they mostly

constrain the high-x gluon

Here correlation coefficients for each bin of each spectrum with the gluon
PDF are plotted as a function of x (from arXIV:1611.08609)
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How do we actually determine PDFs?

We fit data D, to predictions of NNLO QCD, T, (these predictions rely on the PDFs,
which are usually parametrised at an input scale), taking into account the
uncorrelated and correlated uncertainties of the data.

Uncorrelated is easy, there are statistical and uncorrelated systematics in the
Matrix C_.,; and the statistical component may be bin to bin correlated,
Correlated uncertainties are supplied as fractional, y, and can be applied as
fractions of either data D or theory T, by using nuisance parameters b, which are
ideally zero but vary ~x 1 for 1o variations. These parameters are fitted along with
the parameters which describe the PDFs that are input to the predictions.

(This part of the fit is usually done analytically.)

Experimentalists spend YEARS determining the systematic uncertainties of our
data. We do the best we can.

But the formalism above assumes systematic uncertainties are well behaved
Gaussian errors

They aren’t



First let’s consider statistical uncertainties.

The most constraining top distributions are p+', Y Yiparr Mupar @Nd they mostly constrain
the high-x gluon

But they can only be fitted simultaneously for maximal information if statistical
correlations between (as well as within) the spectra are provided

The statistical correlation matrices within/between the spectra have been evaluated
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Table 1: Statistical correlution matrix hetwoen the absclute difforential cross-sections. All variables are meliuded Lo show the corrolations between difforent bins of different variables, From et to right and top o bottom the rows and eobumns are [abeled by bin number for each variable and the variables ar ordered: g, 1), s, and mg.

This information is added to the HEPDATA entry for the lepton+jets spectra
Tables 167,168,169,170,172,173,174,176,177,179
https://www.hepdata.net/record/84154

Tables 29,31,27,23 for the distributions themselves



https://www.hepdata.net/record/84154

Now let’s consider systematic uncertainties.

MANY of these are correlated bin to bin both within and between spectra.

In particular, some systematic uncertainties are what are referred to as

‘2-point systematics’

This means they are determined by running one Monte-Carlo data simulator, say
PYTHIA, and another, say HERWIG, and taking the difference as the systematic
uncertainty. This is a reasonable estimate, it is not a Gaussian error.

Unfortunately, such uncertainties are often the largest systematics--- more than a
few percent.

The formalism also assumes correlated systematic uncertainties are 100% correlated
point to point throughout the data set to which they apply.

100% may not be realistic.

AND it has become common practice to assign more and more systematics.

AT HERA we had 169 for ~1200 data points

AT LHC we often have >~300 for <~300 data points (in some cases MUCH less data)

So we had better be treating them right.

AN example:

ATLAS data on t-tbar differential distribution S



As an example let’s discuss fits to

t-tbar differential distributions in lepton+jets channel at 8 TeV data from
arX1V:1511.04716

https://www.hepdata.net/record/84154

Top data exists as normalised and absolute spectra .

Absolute also carries information on the total t-tbar cross-sections which is useful to
constrain PDF fits.

We will consider absolute spectra but the considerations are similar for normalised
spectra - although the particular systematic uncertainties that are important may
differ

» For the specific fits used in these examples, the top data are used in addition to
the HERA I+l combined data, and the ATLAS W,Z 7 TeV data

« The top data and W,Z data are complementary — top affects the gluon, whereas
W,Z affects the quarks.

« Conclusions on top are similar if W,Z is removed

There is no tension between the top data and the other data sets in the fit
Note global fits have many more data sets, which could be in tension with the these
data, notably jet data.



First consider one spectrum at a time

lepton+jets spectrum
4

My, Pr Y Ui
Total y*/NDF 2354 / 1062 12304 / 1063 12575/ 1060 12465/ 1060 X2 for p;* and
Partial x%/NDP HERA 153 /1016 151 /1016 1149 /1016 1146 /1016 Mibar @7 gOO
Partial 1:-’,.-'_‘4[}[1‘ ATLAS W, Z/4* 82.0 [/ 55 82.1 [ 55 6.4 [ 55 85.0 [ 55
Partial y*/NDP ATLAS tf 34 /7 70 /8 19.7 / & 183 /5

The x2 for the HERA and ATLAS W,Z are similar to when they are fitted without top—
there is no tension
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Both p;! and m, . spectra harden the gluon in comparison to just ATLAS epWZ
(HERA +ATLAS WZ2011)



Now consider one spectrum at a time

lepton+jets spectrum

MMy Pr s if
M., 2 ML e ] e ] aE~ B . Y .
lotal y ...}.[.“I'I 1235.4 / 1062 12394 /1063 12575 / 1060 1246.5 / 1060 X2 for A and Yitbar
Partial 1"],-“?{[}[* HERA 1153 /1016 1151 /1016 1149 /1016 1146 [ 1016 are not good_
Partial °/NDP  ATLAS W, Z/+* 82.0 [/ 55 82.1 [ 55 6.4 [ 55 85.0 [ 55
Partial y2/NDP ATLAS t 34 /7 7.0 /& 19.7 / & 183/ 5

The x2 for the HERA and ATLAS W,Z are similar to when they are fitted without top—
there is no tension.
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NOW try fitting 2 spectra at atime: (p;and y,) and (p{ and m, . )
......................... look at the x2 for these fits

lepton-4 jets spectra

pS- and y, pr and y, Py and m,, p5- and m,,
with statistical without statistical with statistical without statistical
correlations correlations correlations correlations
Total ‘-L"}__-".""-][}E" 1264 [/ 1068 1260 / 1068 1200 / 1070 1287 / 1070
Partial ‘-Li__-".""-;[}F"' HERA 1145 / 1016 1147 / 1016 1162 / 1016 1162 / 1016
Partial 1"“__-".“4[}P ATLAS W 2 /" 82.7 / 55 83.5 / 55 B3.2 / 55 83.1 / 65
Partial f__-".“-.'[H" ATLAS ti 33 /13 30 /13 45 | 15 42 [ 15

This Table shows fits to (p;! and y,) and (p;! and mtt) simultaneously.

In all cases the correlated systematics between the spectra are included.

The correlated statistical uncertainties are used by default but are also switched off to
assess their impact. This makes it clear that the statistical correlations are NOT the
source of the bad x2

None of these top x2 is satisfactory BUT the p;! + vy, x2 is only a bit larger than the
added sum of the p;t and y, separate fit X2 = 26.2, so the main problem here is the
poor fit to y,

whereas the p;! +my, .. X2 is much larger than the sum of the p;! and m, . separate
X2 = 11.3-

This is surprising since the fits to the individual spectra are good o



Since the source of the poor x2 is NOT the statistical correlations we look at the
systematic correlations. Should they ALL be correlated between the spectra?

Three particularly LARGE systematic uncertainties are the sys isr/fsr (~8%) and the sys-
ps_model (~5%) and the hard scattering model (~4%). These are ‘2-point systematics’.
Let’s look at the fitted values of the nuisance parameters, b, for these 3 systematic
uncertainties, when they are fitted separately

Svstematic uncertainty source lepton+jets spectrum
F':!f' Yy Uy MMy
Hard scattering model +0.74+ 0.31 +0.484+ 022 4092+ 037 -0.434+ 0.20
Parton shower model -1.324+ 0.43 -0.79+ 026 -051+ 017  +0.39+0.13
ISR /FSR model -0.47+ 0.18 -0.87+0.30 -1.27+ 0.38 4+0.334+ 0.10
2
X Z D; - Ti(1 Z Yiibi) | Camae(Di D) [ D =Tl = > yijbp) | + 5 12
ik T

The treatment of correlated systematics as nuisance parameters means that they can
introduce correlated shifts in the predictions. Examining the shifts due to these 3 sources
shows that the m,,., Spectrum induces an opposite shift to the other three spectra, when
the spectra are fitted separately. When fitting together the shifts are forced to be the
same ---if 100% correlation is assumed between the spectra. E.g. the common
nuisance parameter for the Parton Shower uncertainty when fitting p;' and my,,

together is -0.32 + 0.10, which suits neither spectrum. 10



Let’s investigate decorrelating these sources of systematic uncertainty between
the spectra, while preserving bin-to-bin correlations within the spectra.

First decorrelate all 3 sources simultaneously and then decorrelate one at a time.
This shows us that it is the decorrelation of the parton shower systematic which is the
most significant (with the isr/fsr uncertainty a close second)

lepton+-jets spectra
,|l!:. and 1, pr and mg, pr and my,

decorrelate decorrelate decorrelate
2-pomnt uncertamties  2-point uncertminties  parton-shower model uncertainty
Total * /NDF 1259 / 1068 1247 7 1070 1248 / 1070
Partial '.,J_.'."w.']:IE" HERA 1147 7 1016 1154 / 1016 1153 / 1016
Partial '.,J_.'."i]:'E" ATLAS W, Z /4" 83.9 / 55 81.9 [ 55 81.6 / 55
Partial '.,J_.'."i]:'E" ATLAS t+ 278 /13 11.5 f 15 4.1 / 15

The effect of decorrelation is marginal for the p;t and y, spectra, as expected since the
shifts induced by these spectra are similar when they are fitted separately. The
resultant x2 is closer to the sum of the x2 of the separate fits (26.2) but is not changed
much

The effect of decorrelation is dramatic for the p;! and my,,, spectra, now that the shifts
are allowed to be different. (The separate nuisance parameters are -0.47 for pt and +0.10 for
mtt). The resultant x2 is close to the sum of the x2 of the separate fits (11.3)

The resultant shape of the gluon barely changes when these systematics arg
decorrelated- the main effect is the improvement in x2



The resultant shape of the gluon barely changes when these systematics are
decorrelated- the main effect is the improvement in x2

All uncertainties fully correlated Compare parton shower uncertainty
correlated/decorrelated
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100% correlation has a marginally stronger pull on the gluon and a marginally smaller
uncertainty.

We chose to decorrelate the parton shower systematic uncertainty between the

spectra. This choice has now also been made by CT and similar choices are made by
MSHT. But you should only do what the experimentalists will support.

The freedom to do this is WHY we want the information on systematic

uncertainty separated into its many sources with preserved bin to bin signs.... 12



What is the most useful way to present the information on correlated uncertainties?
The form of the x2 used treats correlated systematics in terms of
nuisance parameters b,

ik J i

=) (Di —Ti(1 - Z"J‘z‘jbj]) Cain(Di: D) (Dk = Tie(1 - Z?'*ibf}) £
J

The correlated systematic uncertainties and their correlations between different bins (the }fj. terms,

i —
F_,l'-ll FJ AP

typically obtained from preserving the sign of the uncertainty in each bin)

I'HHTI

Example of good practice
The uncertainties don’t HAVE

L dz Uncertainties [%] / Bins [GeV] 0-50 50-100 100-150 150-200 200-250 250-350 350-800

ﬂdp .
e s (O55) TR B8 Lo ng g op o (o be asymmetric BUT they do
Close-by jets (JES) g osoe e T e % % HAVE to be SIGNED to be
Effective detector NP set 1 (JES) 105 1034 T040 120 104 o8  —omi useful
Effective detector NP set 2 (JES) 1985 1008 008 =006 1005 018  —0.26

r ' -} =0.03 —0.02 —0.0T +0.11 +0.07T 0.23 0.7%
Effective mixed NP set 1 (JES) +0.04 4011 —0.12 —0.09 —0.10 I[J.::ui In.:m
Effective mixed NP set 2 (JES) “obs G0z oz soor  toee  toas  tos Correlations BETWEEN the
Effective model NP set 1 (JES) 1005 1004 —022 o34 1048 085  +i51 .
Bifective model NP set 2 (JES) 153 1512 gy e ee wr o different t-tbar spectra; ptavt,
Bffective model NP set 3 (JES)  *08 103 1038 0 fdr 0w co i i
Effecti del NP t 4 (JES —0.14 +0.03 tU.UE +0.08 +0.21 IU.IU IEI.‘J!:L mtt etc’ are eaSIly dealt Wlth

ective moae, set 4 (JES) +0.16 4002  —0.12 40.03 —D.06 ~0.05 +0.10 b a th t at

Effective statistical NP set 1 (JES)  *032 030 032 -oas com  —em e DECAUSE The Sysiematlic

s i oca r =020 .04 =105 +{.15 +0.10 0.1%9 .45 H H
Effective statistical NP set 2 (JES) 7037 1005 —ofa o o2 oA 1041 uncertainties carry the same

i < —0.d4 -—-0.14 .16 +0.33 +0.38 .32 +0.46
Effective statistical NP set 3 (JES) 7043 1018 030 020 028 030 009 names— However please pay

)

Information in this form is much more useful attention to consistency of sign
than a covariance matrix when there is an 13

Issue with systematics—and there often is



Those paying close attention will have noticed that the rapidity distributions are still not
well fitted.

Compare Y., from lepton+jets and dilepton channels to the predictions of this fit
There is a trend of the y,, . lepton+jets data that is hard to fit despite comparable level of
total uncertainties

For the dilepton channel statistical (uncorrelated) uncertainties are a larger contribution
to the total --- correlated systematic uncertainties matter

oy [ pp —tEVS=8TeV: 2021 2 e [ pp—t5Vs=8TeV; 202"
o B . " 3 o
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> = > C
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Total uncertainty 2 ¢  Statistical uncertainty
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Y Ve

This suggests that one MIGHT need decorrelation within the ytt

D e - : 14
spectrum ie differing b parameters as a function of ytt



This was done by the MMHT group in arXiv:1909.10541.

In the simple ATLAS study decorrelating ONLY parton shower between pt; and m;.
the effect of decorrelation is not very significant.

But for the arxiv:1909.10541 study decorrelating parton shower between all 4
spectra and using decorrelation within the rapidity spectra we see that the effect
can be larger than the NLO to NNLO difference.

Comparing theoretical precision to decorrelation

L] LI | T T T T LI B
o ]
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2 3 L Standard NLO
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{] [ T A | 1 L
0.95
E‘ _ I
g 0.9 I

102 101 10¢
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Parting warnings

There is a further problem of relating the source of systematic uncertainty
between two different types of data. Could we have a naming convention?

e.g. Using ATLAS WH+jets from 1711.03296 and Z+jets from 1907.06728

For Z+jets we have uncertainties called ‘ATL_unfold Data’ and ‘ATL_unfold MC’

For W+jets these are called ‘UnfoldReweight’ and ‘UnfoldOtherGen’

This is not so hard --one can talk to the authors, one can read the papers carefully BUT
as time goes on memory is lost.

WORSE STILL, the more data we add the more correlations we need to consider
For example consider V +jets final states and t-tbar in the lepton+jets channels

There could be correlations in the jet systematics between these channels and of both of
these channels to the inclusive jets.

And the JET systematics are the largest

These inter-data-set correlations are not taken into account in any PDF fits.
We experimentalist could try to be more helpful in providing inter-data-set
correlations in areadily understandable form.

If we want 1% accuracy on PDFs this matters!

16
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Recently the statistical correlation matrices between the spectra have been evaluated
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Table 1: Statistical correlution matrix hetwoen the absclute difforential cross-sections. All variables are meliuded Lo show the corrolations between difforent bins of different variables, From et to right and top o bottom the rows and eobumns are [abeled by bin number for each variable and the variables ar ordered: g, 1), s, and mg.

The determination of statistical correlations within each spectrum and among different spectra are eval-
uated using the Bootstrap Method [22]. The method is based on the extraction of A Bootstrap samples
from the data sample. The i — th sample is made by associating a Poissonian weight to each event in
data. From each Bootstrap sample the spectra are replicated following the very same procedure used for
the nominal results. Since the weights are generated on an event-by-event basis, the replicated spectra
are synchronized, thus allowing the determination of statistical correlations among different spectra.

The statistical correlations are evaluated bin-by-bin following the master formula:

AL Bk
an_ 2 SRR — ) REF — B
crf-crf

where G‘;‘}B is the element (i.j) of the statistical correlation matrix among spectra A and B, p! and ¢!
are the mean and the standard deviation between the replicas in the i-th bin of spectrum A, respectively,
and Rf’k is the content of the i-th bin of the k-th replica for spectrum A. The number of replicas has
been set to N =100k.
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Predictions for HERA DIS and ATLAS W,Z and Top

The formalism to relate PDFs to the DIS cross sections is text book stuff we only have to
define the input PDFs and standard programmes do the rest

» QCDNUM for DGLAP evolution at NNLO

* DIS matrix-elements also from QCDNUM with RTVFN heavy quark scheme

= W, Z matrix elements at NLO from MCFM using Applgrid for input to PDF fit

* Augmented with NNLO/NLO k-factors from DYNNLO cross-checked with FEW/Z for

ATLAS. arxIv:1612.03016
= NLO-EVv ana pnoton induced corrections aiso applied

For top
Mitov et al issued fast grids at NNLO: arXiv:1704.08551 to facilitate PDF fitting using
FastNLO. These can be used for the lepton+jets channel
For the dilepton channel MCFM NLO Applgrids are used with NNLO/NLO k-factors
from arXiV:1611.08609
Mitov et all also issued Electroweak corrections arXIV: 1705.04105 these are included
as k-factors
The predictions for y; Yinap My &€ Made for renormalisation and factorisation scale
H. /4, where

Hp = v’lrm.g +(ph)? + —,lff{?'n-f - {p%ﬁ’“"]i

. - _ — 2 2
Whereas the predictions for p; use the scale m;/2 where ™7 = \/ "% ©PT

And m=173.3 GeV.
These scale choices are taken from Czakon, Heymes, Mitov, arXIV:1606.03350 19



As usual in PDF fitting a parametrisation is assumed at a low scale Q2
xq;(z) = AP (1 — 2)“ Pi(z), where Pi(z) = (1 + D;z + E;z®)el'®
Where xq;(x) are the quark distributions (x1y, xdy) and "fl'?}. xd, T5).

The gluon distribution has an extra term  xg(x) = Agx" (1 —x)5 —A;,xbvf(l —x)%
Which allows larger uncertainties at small-x.

The valence and gluon normalisations are set by the number and momentum sum-rules
A few other constraints are applied to the low-x sea-such that ubar=dbar at very low-x,
But the strange normalisation is free --as for the ATLASepWZ16 fit.

The fit begins assuming P;(x)=1 and parameters D,E,F are added to each distribution
until there is no further improvement in x2---saturation of the x2.

Some extra parameters can nevertheless change the shape of the PDFs and these are
included as part of the parametrisation uncertainty.

Assumptions on the low-x sea are also varied as part of parametrisation uncertainty

20



Now try the spectra two by two accounting for BOTH statistical and systematic
correlations between the spectra

E) l__ T T T T T L | T T T T T |: U) T | 7
256 ATLAS Preliminary P ATLAS Preliminary -
2 7 Yhasa 2 ;
1'55 Q=2 GeV? _ Stronger pU” 1'5;_ Q%2 GeV? _
1;— I epWZ + p; (lepton+jet) . th an th 13_ I epWZ + v, (lepton+jet) _f
0.5F % epWZ + ptr *+ Y, (lepton+jet) 0_5:_ % epWzZ + ptT + v, (lepton+jet) 3
OF | | 1 R | ; | L | L "E
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-0.1E

-0.2E :
107 10"

o(xg)/xg

X

Compare fits first adding one spectrum and then two
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do/dyt [pb]

pp — VS =8TeV;: 202
ATLAS Preliminary

pp —thVs=8TeV;: 202"
ATLAS Preliminary

do/d P, [pb]

—e— Data (lepton + jets)
L - -2
¢ Statistical uncertainty 1 0
Total uncertainty
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Total uncertainty
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Theory/Data

do/d m, [pb]

E = === ATLASepWZtop18 + shifts 10—3 E = === ATLASepWZtop18 + shifts
‘g 1.25__ 1 1 | | 1 1
___________ 1.1F
et S M —
L 5 09 —— R
i) ] 5 © 08— : : : :
£ 100 200 300 400 500
Y, = p, [GeV]
; pp > thVs=8TeV; 202" E_ 10k PP — ttVs=8TeV; 202"
_ ATLAS Preliminary _g": ; ATLAS Preliminary
: S o This one is not
3 - in the fit but is

well described

—e— Data (lepton + jets)
¢  Statistical uncertainty
Total uncertainty
10
— ATLASepWZtop18
= === ATLASepWZtop18 + shifts

-3
107 E —e— Data (aliepton

¢  Statistical uncertainty

Total uncertalnty

Theory/Data

I-E o 10—5 - ATLASepWTtopIB |
3 g 12
E Y a 1.1
Tt v o= : 4 =~ E P . J.
N b 15 —_— T ——
- . . g 0.9
500 1000 1500 £ 08t

my [GeV] m, [GeV] 29



